Технический каталог

Запорно-регулирующая арматура

Фильтр RVUIC

ХПВХ

Общие характеристики

Разработанный в 1958 году компанией BF Goodrich, ныне LUBRIZOL, ХПФХ (хлорированный поливинилхлорид) получают хлорированием поливинилхлоридной (ПВХ) смолы в суспензии. В процессе преобразования в макромолекулах ПВХ происходит замещение атомов водорода атомами хлора. В результате этого преобразования получается полимер, обладающий отличной термической и химической стойкостью, а также механической прочностью вплоть до температуры 100°С.

В 1986 году FIP была первой европейской компанией, создавшей комплексную систему, включающую трубы, арматуру и фитинги, названную **TemperFIP100**®. Результатом стала комплексная система продукции для промышленности. Сегодня благодаря двадцати годам сотрудничества с компанией LUBRIZOL EUROPE для производства всей линейки продукции TemperFIP - труб, фитингов и арматуры, изготавливаемых методом экструзии и литья под давлением, используются смолы **ХПВХ CORZAN™**, специально разработанные для промышленного применения.

Смолы ХПВХ обладают также полной совместимостью с водой, подлежащей очистке, деминерализованной и термальной водой.

Система XПВХ TemperFIP100® является одним из наиболее экономически эффективных решений в области полимерных материалов для решения проблем, возникающих в промышленных, технологических, производственных и служебных линиях для транспортировки горячих, агрессивных жидкостей и санитарно-технической горячей и холодной воды.

Важнейшими причинами, определяющими такой выбор, являются особые химико-физические характеристики этих смол, среди которых:

- Высокая химическая стойкость: использование смол CORZAN™, получаемых хлорированием гомополимеров ПВХ, позволяет добиваться высокой химической стойкости к воздействию в особенности сильных неорганических кислот, органических оснований, солевых и щелочных растворов и парафиновых углеводородов. Не рекомендуется к использованию для транспортировки полярных органических соединений, включая различные типы хлорированых и ароматических растворителей. Инертность к электрохимической коррозии обеспечивает высокую надежность транспортировки горячей воды санитарно-технического назначения в обычных установках и солнечных панелях.
- Отличные термические и механические свойства: XПВХ TemperFIP100® применяется в диапазоне рабочих температур от 20°C до 85°C, обладая низким коэффициентом линейного теплового расширения, отличной механической прочностью и способностью выдерживать рабочие давления до 16 бар при 20°C. Замечательная термическая стойкость (температура термопластичности VICAT согласно стандарту EN ISO 15493), вызванная отличной длительной прочностью на разрыв при воздействии постоянного внутренненго давления (разрушающее радиальное напряжение согласно стандарту ASTM D 2837 равно 1000 PSI при 82 °C в течение 100,000 часов) позволяет использовать материал при температуре до 95 °C. Небольшой коэффициент теплопроводности (I = 0.16 Вт/м °C согласно ASTM C177) уменьшает вероятность выпадения конденсата и снижает потери тепла транспортируемыми горячими жидкостями.
- Физические свойства: смолы ХПВХ характеризуются низкой проницаемостью для кислорода и низким водопоглощением (0.07% при 23 °C согласно ASTM D 570). Благодаря наличию в своем состава диоксида титана материал обладает высокой устойчивостью к старению и воздействию неблагоприятных атмосферных факторов (УФ-излучению).
- Огнестойкость: смолы ХПВХ обладают отличной огнестойкостью. Температура воспламенения составляет 482°С, а горение может поддерживаться только в экстремальных условиях, при концентрации кислорода в 3 раза превышающую атмосферную или только в присутствии огня от внешнего источника. Смолам ХПВХ СОRZAN™ присвоены категории VO, 5VB и 5VA согласно UL94.

Плотность				
Методика испытаний	ISO 1183	ASTM D792		
Единица измерения	г/см ³	г/(10 мин.)		
	Арматура/фитинги: 1.50	Арматура/фитинги: 1.50		
Значение	Трубы: 1.50	Трубы: 1.50		
Модуль упругости				
Методика испытаний	ISO 178	ASTM D790		
Единица измерения	МПа = H/мм²	МПа = H/мм²		
Значение	Арматура/фитинги: 2800	Арматура/фитинги: 2992		
	Трубы: 2420	Трубы: 2689		
Ударная прочность по IZO				
Методика испытаний	ASTM D256			
Единица измерения	фут-фунт/дюйм			
Значение	Арматура/фитинги: 1.8 - Труб	бы: 1.6		
Относительное удлинение				
Методика испытаний	ISO 527-1, ISO 527-2			
Единица измерения	%			
Значение	Арматура/фитинги: 16 - Труб	ы: 5		
Твердость по шкале Рокве				
Методика испытаний	ASTM D 785			
Единица измерения	R			
Значение	Арматура/фитинги: 120 - Тру	бы: 116		
Предел прочности при рас				
Методика испытаний	ISO 527-1, ISO 527-2			
Единица измерения	$M\Pi a = H/MM^2$			
Значение Температура термопласти	Арматура/фитинги: 54 - Труб	DBI: 54		
Методика испытаний	EN ISO 15493			
Единица измерения	°C			
Значение	С Арматура/фитинги: ≥ 103 - Тр	WELL < 110		
Температура деформации		уоы. <u>-</u> По		
Методика испытаний	ASTM D648			
Единица измерения	°C			
Значение	Арматура/фитинги: 110 - Трус	 5 _N : 113		
Теплопроводность при 23°		55. 115		
Методика испытаний	DIN 52612-1	ASTM C 177		
Единица измерения	BT/(M °C)	Bt/(m °C)		
	Арматура/фитинги: 0.16	Арматура/фитинги: 0.16		
Значение	Трубы: 0.16	Трубы: 0.16		
Коэффициент линейного то	еплового расширения			
Методика испытаний	DIN 53752	ASTM D696		
Единица измерения	M/(M °C)	м/(м °С)		
Значение	1 ' ' '	Арматура/фитинги: 5.6 x 10⁻⁵		
	Трубы: 6.6 x 10 ⁻⁵	Трубы: 6.6 x 10 ⁻⁵		
Предельный кислородный				
Методика испытаний	ISO 4859-1	ASTM D2863		
Единица измерения	%	%		
Значение	Арматура/фитинги: 60	Арматура/фитинги: 60		
	Трубы: 60	Трубы: 60		

ХПВХ

Применимые стандарты

Продукция из ХПВХ TemperFIP100® выпускается согласно высоким стандартам качества при полном соблюдении экологических требований в соответствии с действующим законодательством и стандартом ISO 14001. Все изделия изготавливаются согласно требованиям системы гарантии качества по стандарту ISO 9001.

ANSI B16.5

Раструбные трубы и фитинги размером от NPS 1/2 до NPS 24 мм/дюйм.

ASTM D1784 cl. 23548B

Сырье ПВХ и ХПВХ для промышленного применения.

ASTM F437

Резьбовые фитинги из ХПВХ, сортамент 80.

• ASTM F439

Фитинги из ХПВХ.

ASTM F441

Трубы из ХПВХ, сортамент 40 и 80.

Технические условия для фланцев и болтовых соединений труб, арматуры и фитингов.

Фланцы для труб, арматуры и фитингов (конструкция в зависимости от класса). Фланцы из стали, чугуна и медных сплавив. Технические условия для стальных фланцев.

BS 4504

Фланцы для труб, арматуры и фитингов (конструкция в зависимости от рабочего давления).

DIN 2501

Фланцы, присоединительные размеры.

DIN 2999

Резьба для труб и фитингов.

DIN 8063

Размеры фитингов из ХПВХ.

DIN 8079-8080

Трубы из ХПВХ, размеры.

DIN 16962

Фитинги из ХПВХ для сварки враструб, размеры.

DIN 16963

Соединения и детали трубопроводов из полиэтилена высокой плотности для транспортировки жидкостей под давлением.

FN 558-1

Арматура трубопроводная промышленная. Присоединительные и центровочные размеры металлической арматуры для фланцевых трубопроводных систем. Часть 1: Арматура с обозначением по рабочему давлению.

• EN 1092-1

Фланцы и их соединения. Круглые фланцы для труб, арматуры, фитингов и аксессуаров. Часть 1: Стальные фланцы с маркировкой давления (PN).

EN ISO 15493

Элементы (трубы, фитинги и арматура) из ХПВХ для промышленного применения.

• ISO 228-1

Фитинги из XПВХ с резьбовыми окончаниями.

ISO 521

Присоединительные размеры для установки неполнооборотных приводов.

• ISO 7005-1

Фланцы металлические. Часть 1. Стальные фланцы.

• JIS B 2220

Фланцы металлических труб.

• UNI 11242

Холодная сварка труб, фитингов и арматуры из ХПВХ.

Сертификаты и знаки качества

ABS

Система XПВХ TemperFIP100® признана пригодной для транспортировки санитарных вод и вод кондиционированния на борту судов и других объектов, классифицированных Американским бюро судоходства (ABS)

ACS

Система XПВХ TemperFIP100® сертифицирована на пригодность для контакта с питьевой водой согласно Аттестации санитарного соответствия (ACS)

Bureau Veritas

Система XПВХ TemperFIP100® признана пригодной для транспортировки санитарных вод и вод кондиционированния на борту судов и других объектов, классифицированных Бюро Веритас - Морской сектор (Bureau Veritas - Marine Division)

DNV-GL

Система XПВХ TemperFIP100 $^{\circ}$ признана пригодной для транспортировки санитарных вод и вод кондиционированния на борту судов и других объектов, классифицированных DNV-GL

• EAC MAXISIM-IN

FIP XПВХ арматура сертифицирована в соответствии с Техническими Регламентами Таможенного Союза

Lloyd's Register

Фитинги и трубы XПВХ TemperFIP100® признаны пригодными для транспортировки санитарных вод и вод кондиционирования на борту судов и других объектов, классифицированных Lloyd's Register

• KR - Korean Register

Система XПВХ TemperFIP100® признана пригодной для транспортировки санитарных вод и вод кондиционирования на борту судов и других объектов, классифицированных КR (Корейский регистр судоходства)

NSF (National Sanitation Foundation USA)

Шаровые краны FIP из XПВХ получили сертификат соответствия стандарту NSF/ANSI 61 - Систамы очистки питьевой воды - Влияние на здоровье

TA-Luft

• TA-Luft

Арматура из XПВХ TemperFIP100 $^{\circ}$ испытана и сертифицирована MPA Штутгарт согласно Закону ФРГ о контроле над загрязнением воздуха TA-Luft в соответствии с технической инструкцией по контролю качества воздуха TA-Luft/VDI 2440

• UKR SEPRO

Арматура и фитинги из XПВХ TemperFIP100® сертифицированы в соответствии с украинскими регламентами по безопасности и качеству

WRAS

Система XПВХ TemperFIP100® сертифицирована WRAS (Water Regulation Advisory Scheme - Великобритания)

RMRS

Система XПВХ TemperFIP100 $^{\circ}$ признана пригодной для транспортировки санитарных вод и вод кондиционирования на борту судов и других объектов, классифицированных Российским Морским Регистром Судоходства

Инструкции по холодной сварке

Холодная сварка с применением специального связующего состава и растворителя представляет собой продольное соединение труб и фитингов из XПВХ TemperFIP100®.

Холодная сварка выполняется при помощи специальных связующих составов, полученных в результате разложения полимеров ХПВХ в смеси растворителей, которые размягчают стенки труб и фитингов перед последующим соединением. Холодная сварка позволяет получить неразъемные соединения с химической и механической стойкостью, сопоставимой с аналогичными характеристиками используемых труб и фитингов. Связующие составы должны подбираться с учетом типа соединяемых полимерных материалов, поскольку свойства растворителей и добавок могут изменяться. Следует помнить, что все связующие составы, предназначенные для соединения труб ТетрегFIP100® и входящие в систему ТетрегFIP100® должны использоваться для соединения труб, фитингов и арматуры из одного и того же полимерного материала.

Ни в коем случае нельзя применять один и тот же связующий состав для соединения элементов из разных полимерных материалов, используемых в системе TemperFIP100®.

Для соединения труб ХПВХ компания FIP разработала специальные связующие составы TemperGLUE и TemperGLUE/Weld-On 724 с применением компаунда ХПВХ марки CORZAN $^{\text{ТM}''}$, который используется при производстве труб, фитингов и арматуры, что гарантирует получение высоконадежного неразъемного соединения.

Перед выполнением холодной сварки проверьте срок годности и состояние используемых материалов и соединяемых деталей. Проверьте однородность, текучесть и срок годности связующего состава.

- 1) Отрезать трубу перпендикулярно ее оси; для получения правильного прямого сечения рекомендуется пользоваться роликовыми труборезами для резки труб из термопластика (рис. 1).
- 2) Обработать конец трубы с фаской на наружной поверхности, чтобы обеспечить правильное введение трубы в фитинг, под углом 15° (с учетом значений, приведенных в таблице "Длина холодной сварки и размер фаски трубы"). Эта операция обязательна, поскольку отсутствие фаски может привести к соскабливанию и удалению связующего состава с поверхности фитинга, что нарушает эффективность соединения. Операция выполняется с помощью специальных приспособлений для снятия фаски (рис. 2).
- 3) Измерить глубину раструба фитинга до внутреннего упора и отметить на конце трубы соответствующее расстояние (рис. 3 и 4).
- 4) Пользуясь салфеткой/промокательной бумагой (чистой) или аппликатором, пропитанным очистителем Primer или Primer P70 (TemperFIP), устранить все следы загрязнения и (или) смазки с наружной поверхности трубы по всей длине холодной сварки; повторить ту же операцию на внутренней поверхности раструба фитинга до размягчения поверхностей (рис. 5).

Просушите поверхности в течение нескольких минут, а затем нанесите связующий состав.

Следует помнить, что используемые очистители Primer TemperFIP100® или Primer P70 не только очищают соединяемые поверхности, но и оказывают важное действие по размягчению и подготовке к нанесению связующего состава, что позволяет получить оптимальное соединение.

5) Равномерно в продольном направлении нанесите связующий состав TemperGLUE или TemperGLUE/Weld-On 724 на оба соединяемых компонента (на наружную поверхность трубы и на внутреннюю поверхность раструба фитинга), пользуясь аппликатором или грубой кистью подходящего размера (таблица "Характеристики и размеры кистей и аппликаторов").

Рис. 1

Рис. 2

Рис. 3

Рис. 4

Рис. 5

Рекомендуется использовать аппликатор/кисть размером не менее половины диаметра трубы (рис. 7 - 8).

Связующий состав TemperGLUE должен быть нанесен на всю длину холодносвариваемых поверхностей трубы и фитинга:

- на всю глубину раструба фитинга до внутреннего упора;
- на всю длину холодносвариваемой трубы, ранее отмеченную на ее наружной поверхности.
- 6) Без промедления вставьте трубу в фитинг на всю предусмотренную длину холодной сварки, не поворачивая ее, только после этого можно слегка повернуть оба конца (не более 1/4 оборота между трубой и фитингом). Вращательное движение способствует более однородному распределению нанесенного слоя связующего состава (рис. 8).
- 7) Вставлять трубу в фитинг нужно как можно быстрее (рекомендуется выполнять эту операцию в течение не более 20-25 секунд). В зависимости от диаметра трубы и, следовательно, от степени сложности операции, вставка трубы в фитинг должна выполняться:
- вручную одним человеком, до наружных диаметров d < 90 мм;
- вручную двумя людьми, для наружных диаметров от d 90 мм до d < 160 мм;
- с помощью механических толкателей труб, для наружных диаметров d > 160 мм.
- 8) Сразу после введения трубы в фитинг (до упора) необходимо на несколько секунд приложить давление к деталям, затем без промедления убрать крепированной бумагой или чистой салфеткой избыток связующего состава с наружной поверхности и, по возможности, с внутренних поверхностей (рис. 9).
- 9) Высыхание связующего состава: необходимо оставить соединенные компоненты для естественной сушки связующего состава, контролируя отсутствие аномальных нагрузок.

Время сушки зависит от нагрузок, которые будут прикладываться к соединению. В частности, необходимо выдерживать следующие минимальные интервалы времени в зависимости от температуры среды:

- до перемещения соединения:
- от 5 до 10 минут при температуре окружающей среды > 10 °C;
- от 15 до 20 минут при температуре окружающей среды < 10 °C;
- для ремонтных соединений, не подвергающихся испытанию под давлением, для всех размеров и любого давления:
- 1 час для каждой атмосферы прилагаемого давления;
- для соединений, которые подвергаются гидравлическому испытанию, для труб и фитингов любого диаметра до PN 16:
- не менее 24 часов.

Указанное время, необходимое для надлежащего высыхания связующего состава, рассчитано для комнатной температуры (около 25 °C). Для специальных климатических условий (влажность, температура и т. д.) рекомендуется обратиться в отдел техобслуживания и (или) на предприятия, производящие связующие составы, за более подробной информацией.

Рис. 6

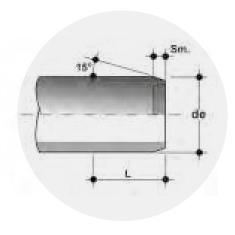

Рис. 7

Рис. 8

Рис. 9

Длина введения, холодная сварка и фаска трубы

Наружный диаметр de (мм)	Длина холодной сварки L (мм)	Фаска Sm (мм)
16	14	1.5
20	16	1.5
25	18.5	3
32	22	3
40	26	3
50	31	3
63	37.5	5
75	43.5	5
90	51	5
110	61	5
160	86	5
225	118.5	5÷6

Характеристики и размеры кистей аппликаторов

Наружный диаметр de (мм)	Тип и размеры кисти или аппликатора
16 - 25	Круглая (8 - 10 мм)
32 - 63	Круглая (20 - 25 мм)
75 - 160	Прямоугольная / Круглая (45 - 50 мм)
>160	Прямоугольная / цилиндрическая (45 - 50 мм)

Предупреждения

- В случае, если наружный диаметр трубы и внутренний диаметр фитинга находятся на разных пределах допуска, сухая труба может не вставляться в сухой раструб фитинга. Операция введения становится возможной только после совместного нанесения очистителя и связующего состава на оба компонента, подлежащих сварке.
- Связующие составы TemperGLUE и TemperGLUE/Weld-On 724 разработаны с применением сырья XПВХ марки CORZAN™, который используется компанией FIP при производстве труб, фитингов и арматуры, составляющих систему TemperFIP. Если не указано иное, связующий состав наносится на соединяемые поверхности со следующими допусками:
- Натяг не более 0.2 мм:
- -Допуск на зазор не более 0.3 мм.
- Сочетание связующего состава TemperGLUE/Weld-On 724 и очистителя Primer P70 для соединения элементов из XПВХ CORZAN™ рекомендуется в случае транспортировки особо агрессивных химических жидкостей (кислот или сильных оснований).
- В процессе применения связующих составов TemperGLUE и очистителей Primer TemperFIP необходимо соблюдать следующие меры предосторожности:
- Использовать перчатки и защитные очки для защиты рук и глаз;
- Использовать связующий состав и очиститель в хорошо проветриваемых рабочих помещениях во избежание образования воздушных мешков, содержащих концентрированные пары растворителя, которые могут вызвать раздражение дыхательных путей и органов зрения.
- Учитывая летучесть растворителей, присутствующих в связующих составах и очистителях, следует закрывать емкости с этими веществами сразу же после их использования.
- Растворители в газообразном состоянии могут образовывать воспламеняющиеся смеси, поэтому рекомендуется устранить из рабочей зоны потенциальные источники возгорания, например: не выполнять сварочных операций, избегать скопления электростатических зарядов и не курить. В любом случае рекомендуется тщательно соблюдать меры предосторожности, указанные производителями связующего состава и приведенные на упаковке.
- Холодную сварку следует выполнять при температуре окружающей среды от + 5 °C до + 40 °C, чтобы обеспечить надлежащие характеристики связующего состава и очистителя.
- Количество связующего состава необходимого для выполнения соединения, зависит от ряда факторов (условий окружающей среды, размера труб, вязкости связующего состава, опыта персонала и т. п.), которые трудно поддаются количественной оценке. В параграфе "Трубы и фитинги из жесткого ХПВХ. Расчетный расход связующего состава" приведены примерные значения количества связующего состава, обычно используемого для соединения труб и фитингов различных диаметров.
- После выполнения всех соединений и перед началом эксплуатации полученных компонентов следует убедиться, что внутри труб отсутствуют остатки/пары растворителя. Это позволит избежать загрязнения транспортируемых жидкостей.

Трубы и фитинги из жесткого XПВХ. Расчетный расход связующего состава.

Диаметр трубы/Фитинга d (мм)	Число соединений на 1 кг связующего состава
16	550
20	500
25	450
32	400
40	300
50	200
63	140
75	90
90	60
110	40
160	15
225	6

Распространенные дефекты

В следующей таблице приведены наиболее часто встречающиеся типы дефектов, возникающие в результате неправильной процедуры холодной сварки.

Слишком жидкий свя	зующий состав (неправильная добавка разбавителя)
Мгновенный эффект	Холодной сварки не происходит
Последствия	Разъединение или утечки через соединение трубы с фитингом
Избыток связующего	состава
Мгновенный эффект	Наружные и внутренние потеки вне зоны соединения
Последствия	Ослабление наружных поверхностей вне зоны соединения и образование пузырей с микротрещинами или источниками разлома базового материала
Связующий состав не	едостаточно или неправильно распределен
Мгновенный эффект	Не происходит холодной сварки или слабое локальное схватывание
Последствия	Разъединение или утечки через соединение трубы с фитингом
Неправильное введе	ние трубы (недостаточное, чрезмерное, несоосное)
Мгновенный эффект	Неидеальное соединение
Последствия	Механические напряжения, передаваемые от трубы на фитинг, и (или) утечки через соединение
Загрязнения и (или) в	лага на свариваемых поверхностях компонентов
Мгновенный эффект	Неидеальное соединение
Последствия	Разъединение или утечки (просачивание рабочей среды) через соединение трубы с фитингом

Инструкции по монтажу резьбовых соединений

Для достижения герметичного уплотнения соединения фитингов и арматуры с торцевым присоединением в виде внутренней резьбы, рекомендуется произвести следующие операции:

- **1.** Начните наматывать уплотнительную ленту из PTFE с внешней стороны резьбовой наружной части, стараясь не засорить сквозное отверстие на трубе, фитинге или клапане (рис. 1).
- 2. Завершите первый обернутый слой путем намотки ленты по часовой стрелке до достижения корня резьбы. Помните о том, чтобы держать ленту натянутой на протяжении всего процесса (рис. 2).
- **3.** Нажмите на кончики нитки чтобы убедиться, что лента полностью прилегает к опоре.
- **4.** Увеличьте толщину слоя РТFE, продолжая наматывать тугую ленту и заворачивая по часовой стрелке до достижения оптимального уровня (рис. 3).
- **5.** Присоедините ранее запломбированный конец с наружной резьбой к концу с внутренней резьбой и продолжайте вручную накручивать резьбу.
- **6.** Убедитесь, что слой РТГЕ не удален во время завинчивания, так как это может нарушить гидравлическое уплотнение соединения.
- **7.** Завершите завинчивание двух концов, используя всю длину резьбы с помощью ключа или аналогичного инструмента.
- **8.** Не затягивайте элементы слишком сильно, так как это может повредить резьбу или создать напряжение в самих элементах.

Для правильной установки мы рекомендуем использовать только герметизирующую неспеченую ленту РТFE. Избегайте использования таких материалов как пенька, пух или краски, обычно применяющихся для гидравлического уплотнения на металлической резьбе.

Предупреждения

Избегайте использования резьбовых соединений в следующих случаях:

- особо важные области применения, например, для транспортировки химически агрессивных или токсичных жидкостей;
- при наличии среднего или высокого давления мы рекомендуем использование соединений, сваренных растворителем, соединений горячей сварки или фланцевых соединений;
- системы, подверженные механическим и / или термическим нагрузкам, например, гидравлическим ударам, сильным колебаниям температуры, изгибам, перекосам и поперечным напряжениям, которые могут привести к преждевременному разрыву резьбового соединения;
- соединение элементов, находящихся на слишком большом расстоянии друг от друга.

Рис. 1

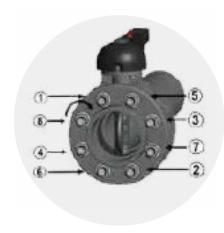


Рис. 2

Рис. 3

Инструкции по монтажу фланцевых соединений

Для достижения правильного и герметичного монтажа фланцевых элементов мы рекомендуем произвести следующие шаги:

- 1. Наденьте кольцо на трубу прежде чем приступить к установка бурта.
- **2.** В случае фиксированного фланца убедитесь, что отверстия правильно совмещены с ответным фланцем.
- **3.** Убедитесь, что положение ответного фланца учитывает общие размеры межфланцевого расстояния.
- **4.** Вставьте плоскую прокладку между буртами (этот шаг не требуется для дисковых затворов), убедившись, что уплотнительные поверхности присоединяемых фланцев не были разделены слишком большим расстоянием.
- **5.** Приступите к сварке растворителем или сваркой неподвижных фланцев или бурта (в случае колец) в соответствии с инструкциями по сварке или сварке растворителем, предоставляемыми FIP.
- 6. Вставьте все болты, шайбы и гайки.
- 7. По истечении времени охлаждения продолжайте затягивать болты «крестнакрест» (рис. 1).
- **8.** Завершите процесс затяжки болтов динамометрическим ключом до тех пор, пока не будут достигнуты значения момента затяжки, указанные в таблице.

Момент затяжки

Моменты затяжки гаек и болтов для достижения уплотнения с фланцами из ПВХ или ХПВХ с прокладками из EPDM / FKM / NBR во время испытания давлением (1,5 x PN на воде при 20 °C),

DN	40	50	65	80	100	125	150	200	250	300	350	400
Нм	9	12	15	18	20	35	40	55	70	70	75	75

Обратите внимание:

- использование фланцев из металла с покрытием или стекловолокна позволяет применять более высокие моменты затяжки, если они не превышают предел упругости материала;
- использование различных эластомерных уплотнительных материалов из перечисленных в предыдущей таблице может потребовать немного более высоких моментов затяжки;
- FIP всегда рекомендует использовать шайбы подходящего размера для любых болтов, используемых в ответном фланце.

Минимальная длина болтов

Для фланцевых дроссельных заслонок				
DN	L мин			
40	M16x150			
50	M16x150			
65	M16x170			
80	M16x180			
100	M16x180			
125	M16x210			
150	M20x240			
200	M20x260			
250	M20x310			
300	M20x340			
350	M20x360			
400	M24x420			

Для фланце	вых соединений труб, ис	пользующих опорные кольца
d	DN	L мин
20	15	M12x70
25	20	M12x70
32	25	M12x70
40	32	M16x85
50	40	M16x85
63	50	M16x95
75	65	M16x95
90	80	M16x105
110	100	M16x105
125	125	M16x115
140	125	M16x120
160	150	M20x135
200	200	M20x140
225	200	M20x140
250	250	M20x150
280	250	M20x160
315	300	M20x180
355	350	M20x180
400	400	M22x180

Основные свойства

Свойства ХПВХ		Преимущества
Термическая стойкость		• Рабочий диапазон 0-100 ° С (см. кривые регрессии давления / температуры)
Низкая шероховатость поверхности	5	 Высокий коэффициент пропускной способности (чрезвычайно гладкие внутренние стенки) Потери давления постоянны во времени Отсутствие накипи и отложений на стенках Сниженный перенос материала в транспортируемую жидкость
Химическая стойкость	50	• Исключительная химическая стойкость для транспортировки агрессивных сред
Абразивная стойкость		• Низкие эксплуатационные расходы, длительный межсервисный интервал
Изоляция	0	 Не проводит электрический ток (невосприимчив к гальванической коррозии) Нет проблем с конденсацией Минимальные тепловые потери
Наименьший коэффициент линейного теплового расширения среди полимеров	\longleftrightarrow	• Снижение потребности в опорах и компенсаторах, что приводит к значительному преимуществу с точки зрения конструкции установки
Простота монтажа (холодная сварка)		• Снижение затрат на установку благодаря сварке растворителем, выполненной с использованием подходящего связующего состава
Огнестойкость		Высокое сопротивление возгоранию по сравнению с обычными полимерными материалами, а также эффект самотушения за счет высокого содержания хлора
Оптимальные механические свойства		• XПВХ соответствует требованиям механической прочности и требованиям при проектировании промышленных предприятий

Грязевой фильтр RV из XПВХ/СРVС/PVC-C

Технические характеристики

- > Размеры DN15 DN50
- > Давление до 16 бар при 20°C (68°F)
- > Корпус из ХПВХ
- > Уплотнения из EPDM или FPM
- Простота в эксплуатации, очистка фильтра может быть произведена без его демонтажа с технологической линии

RVUIC

Грязевой фильтр с разборными муфтовыми окончаниями под клеевое соединение, метрическая серия.

d	DN	PN	EPDM Артикул	FPM Артикул	pack	n./box	box type
20	15	16	RVUIC020E	RVUIC020F	1	20	04
25	20	16	RVUIC025E	RVUIC025F	1	10	04
32	25	16	RVUIC032E	RVUIC032F	1	10	04
40	32	16	RVUIC040E	RVUIC040F	1	6	04
50	40	16	RVUIC050E	RVUIC050F	1	6	03
63	50	16	RVUIC063E	RVUIC063F	1	4	03

Примечание: Стандартная сетка из полипропилена (РР-Н) с размером ячеек 1,5мм

www.maxiarm.ru

RV DN 15÷50

ХПВХ

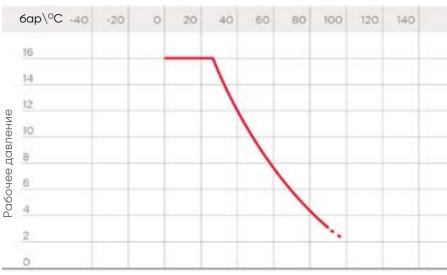
Грязевой фильтр

RV **DN 15÷50**

Грязевой фильтр серии RV задерживает твердые включения, присутствующие в рабочей среде при помощи фильтрующей сеточки.

ГРЯЗЕВОЙ ФИЛЬТР

- Система холодносварного, резьбового и фланцевого соединения
- Фильтрующая сеточка установлена в легко извлекаемую опору, что упрощает ее очистку или замену
- Совместимость материала фильтра (ХПВХ) с водой, питьевой водой и другими пищевыми продуктами в соответствии с действующими нормативами
- Обслуживание фильтра возможно без демонтажа


	Технические характеристики	
	Конструкция	Грязевой фильтр
	Диапазон диаметров	DN 15 ÷ 50
	Номинальное давление	PN 16 при температуре воды 20 °C
	Диапазон температур	0 °C ÷ 60 °C
	Стандарт соединений	Холодносварное соединение: EN ISO 15493, ASTM F 439. Соединения с трубами по стандарту EN ISO 15493, ASTM F 441 Фланцы: ISO 7005-1, EN ISO 15493, EN 558-1, DIN 2501, ANSI B.16.5 кл. 150 Резьбовые соединения: UNI ISO 228-1, DIN 2999, ASTM F 437
	Применимые стандарты	Конструктивные критерии: EN ISO 15493
		Методики и требования к испытаниям: ISO 9393
		Критерии монтажа: DVS 2204, DVS 2221, UNI 11242
	Материалы клапана	Корпус: ХПВХ Фильтрующая сетка: полипропилен
	Материалы уплотнений	EPDM, FKM

ТЕХНИЧЕСКИЕ ДАННЫЕ

ГРАФИК ЗАВИСИМОСТИ ДАВЛЕНИЯ ОТ **ТЕМПЕРАТУРЫ**

Для воды или неагрессивных сред, в отношении которых материал классифицируется как ХИМИЧЕСКИ СТОЙКИЙ. В других случаях требуется соответствующее снижение номинального давления PN (зависимость сохраняется 25 лет с учетом коэффициента запаса прочности).

В случае необходимости использования ХПВХ при рабочих температурах выше 90° рекомендуется обратиться в службу технической поддержки.

Рабочая температура

ГРАФИК ПЕРЕПАДА **ДАВЛЕНИЯ**

15

40

Kv100 л/мин

20

70

103

188

255

КОЭФФИЦИЕНТ ПРОПУСКНОЙ СПОСОБНОСТИ К, 100

Под коэффициентом пропускной способности К,100 понимается расход воды Q, выраженный в литрах в минуту (при температуре воды 20 °C), при перепаде давления △ p=1 бар для определенного положения клапана. Значения К,,100 в таблице приводятся для полностью открытого клапана.

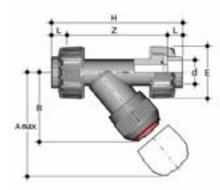
РАЗМЕРЫ ФИЛЬТРУЮЩЕЙ СЕТКИ

Шаг (мм)	20÷25	32÷63
число отверстий на см 2	37	32
размер отверстий, эквивалентных ASTM		20
ø эквивалентного отверстия µm	1016	889
материал сетки	PP	PP

Шаг (мм)	20÷25	32÷63
число отверстий на см²	37	32
размер отверстий, эквивалентных ASTM		20
	404/	000

50

410

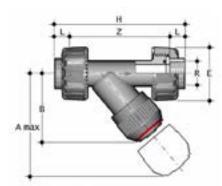

ОБЩАЯ ФИЛЬТРУЮЩАЯ ПОВЕРХНОСТЬ A_{OBUL} (cm²)

DN	15	20	25	32	40	50
A	16	23,5	36	53	69	101

www.maxiarm.ru

Данные, приведенные в настоящей брошюре, достоверны. Компания FIP не несет никакой ответственности за те данные, которые не следуют непосредственно из международных стандартов. Компания FIP оставляет за собой право вносить любые изменения в характеристики. Монтаж изделия и его техобслуживание должны выполняться квалифицированным персоналом.

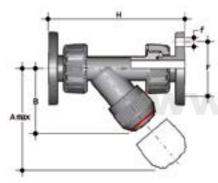
РАЗМЕРЫ



RVUIC

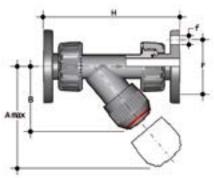
Грязевой фильтр с разборными муфтовыми окончаниями под холодную сварку, метрический стандарт

d	DN	PN	А макс	В	Е	Н	L	Z	g	Артикул EPDM	Артикул FKM
20	15	16	125	72	55	135	16	103	231	RVUIC020E	RVUIC020F
25	20	16	145	84	66	158	19	120	392	RVUIC025E	RVUIC025F
32	25	16	165	95	75	176	22	132	576	RVUIC032E	RVUIC032F
40	32	16	190	111	87	207	26	155	802	RVUIC040E	RVUIC040F
50	40	16	210	120	100	243	31	181	1199	RVUIC050E	RVUIC050F
63	50	16	240	139	120	298	38	222	2018	RVUIC063E	RVUIC063F


www.maxiarm.ru

RVUNC

Грязевой фильтр с разборными муфтовыми окончаниями с внутренней резьбой, стандарт NPT

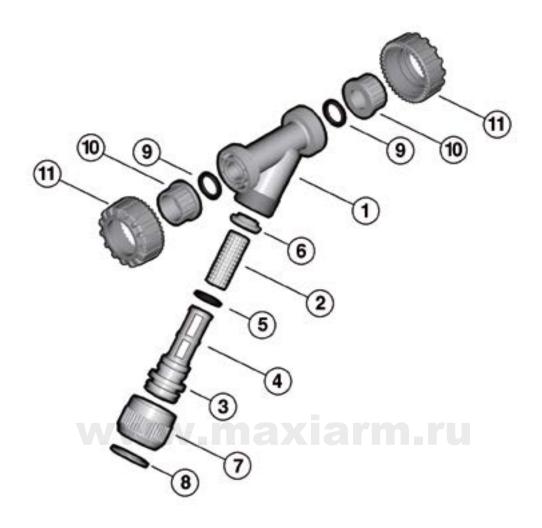

R	DN	PN	А макс	В	Е	Н	L	Z	g	Артикул EPDM	Артикул FKM
1/2"	15	16	125	72	55	143	17,8	107,4	231	RVUNC012E	RVUNC012F
3/4"	20	16	145	84	66	159	18	123	392	RVUNC034E	RVUNC034F
1"	25	16	165	95	75	183	22,6	137,8	576	RVUNC100E	RVUNC100F
1" 1/4	32	16	190	111	87	214	25,1	163,8	812	RVUNC114E	RVUNC114F
1" 1/2	40	16	210	120	100	235	24,7	185,6	1211	RVUNC112E	RVUNC112F
2"	50	16	240	139	120	285	29,6	275,8	2051	RVUNC200E	RVUNC200F

RVUOC

Грязевой фильтр с неподвижными фланцами, стандарт EN/ISO/DIN PN10/16

d	DN	PN	А макс	В	F	f	Н	g	Артикул EPDM	Артикул FKM
20	15	16	125	72	65	14	163	360	RVUOC020E	RVUOC020F
25	20	16	145	84	75	14	193	495	RVUOC025E	RVUOC025F
32	25	16	165	95	85	14	211	660	RVUOC032E	RVUOC032F
40	32	16	190	111	100	18	244	1000	RVUOC040E	RVUOC040F
50	40	16	210	120	110	18	277	1320	RVUOC050E	RVUOC050F
63	50	16	240	139	125	18	331	1910	RVUOC063E	RVUOC063F

RVUOAC


Грязевой фильтр с неподвижными фланцами, стандарт ANSI B16.5 кл. 150. Плоская уплотнительная поверхность по EN 558-1

Размер	DN	PN	А макс	В	F	f	Н	g	Артикул EPDM	Артикул FKM
1/2"	15	16	125	72	60,3	15,9	175	360	RVUOAC012E	RVUOAC012F
3/4"	20	16	145	84	69,9	15,9	214	495	RVUOAC034E	RVUOAC034F
1"	25	16	165	95	79,4	15,9	237	660	RVUOAC100E	RVUOAC100F
1"1/4	32	16	190	111	88,9	15,9	253	1000	RVUOAC114E	RVUOAC114F
1"1/2	40	16	210	120	98,4	15,9	289	1320	RVUOAC112E	RVUOAC112F
2"	50	16	240	139	120,7	19,1	333	1910	RVUOAC200E	RVUOAC200F

www.maxiarm.ru

КОМПОНЕНТЫ

ДЕТАЛИЗИРОВАННАЯ ВЗРЫВ-СХЕМА

- **1** Корпус (ХПВХ 1)
- 2 Фильтрующая сетка (РР-Н 1)*
- **3** Крышка (XПВХ 1)
- **4** Опора сетки (XПВХ 1)
- 5 Кольцевое уплотнение (EPDM или FKM 1)*
- 6 Шайба (ХПВХ 1)
- **7** Гайка (XПВХ 1)
- В Разрезное кольцо (ХПВХ 1)
- Торцевое уплотнение (EPDM или FKM - 2)*
- **10** Окончание (XПВХ 2)*
 - Гайка (ХПВХ 2)

В скобках указан материал компонента и число изделий в комплекте поставки

^{*} Запчасти

РАЗБОРКА

- 1) Сбросить давление в системе, опорожнить трубопровод перед фильтром.
- 2) Отвинтить гайку (7) и отделить узел крышки опоры (3-4) от корпуса (1).
- 3) Снять шайбу (6) с узла крышки опоры (3-4).
- 4) Извлечь разрезное кольцо (8) и отделить гайку (7) от крышки (3).
- 5) Извлечь кольцевое уплотнение крышки (5).

СБОРКА

- 1) Установить кольцевое уплотнение (5) ів гнездо крышки (3).
- 2) Вставить крышку (3) в гайку (7) и закрепить эти два компонента с помощью разрезного кольца (8)
- 3) Вставить фильтрующую сетку (2) в узел крышки опоры (3-4) и затянуть шайбой (6).
- 4) Вставить крышку (3) в корпус (1) и завинтить гайку (7).

Примечание: Операции техобслуживания могут проводиться без снятия корпуса грязевого фильтра. Рекомендуется смазать резиновые уплотнения во время сборочных операций. Следует помнить, что минеральные масла непригодны для этой цели, т.к. они агрессивны к этилен-пропилен каучуку (EPDM).

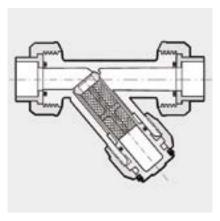


Рис. 1

УСТАНОВКА

Грязевой фильтр можно устанавливать в любом положении при этом стрелка на корпусе должна показывать направление рабочей среды, а фильтрующая часть должна быть направлена вниз. Во избежание повреждения фильтрующей сетки рекомендуется установить в систему устройство, не позволяющее изменять направление рабочей среды.

- 1) Отвинтить гайки (11) и надеть их на отрезки труб.
- 2) Приварить окончания (10) к отрезкам труб.
- 3) Разместить грязевой фильтр между окончаниями.
- 4) Затянуть гайки.

предупреждения 🗸

Грязевые фильтры с прозрачным корпусом пропускают свет, что приводит к росту в них водорослей и микроорганизмов.

Грязевые фильтры с прозрачным корпусом не защищены от воздействия солнечного света. Применение в наружных системах ускоряет процесс старения материала, сокращая срок службы.

Рекомендуется защищать грязевые фильтры с прозрачным корпусом от воздействия вибрационных нагрузок вблизи насосных групп.

Необходимо постоянно проверять чистоту фильтрующих элементов.

РАСШИФРОВКА **СОКРАЩЕНИЙ**

ABS Акрилонитрилбутадиенстирол

Болты

Стандартный артикул уплотнительного кольца

Номинальный наружный диаметр в мм

Двойного действия

DN Средний условный внутренний диаметр в мм

EPDM Этиленпропилен-каучук

FKM (FPM) Фтор-каучук

9 Вес в граммах

НІРVС ПВХ высокой прочности

К

Кд Вес в килограммах

Длина в метрах

MRS Гарантированное минимальное значение предела

прочности материала при 20 °C – вода – в течение 25 лет

службы

П Количество отверстий фланца

NBR Нитрилбутадиеновый каучук

ОР Рабочее давление

Р Шланговый адаптер

РА Полиамид

PA-GR Полиамид усиленный стекловолокном

РВТ Полибутилентерефталат

РЕ Полиэтилен

PN Номинальное давление, бар (максимальное рабочее

давление в воде при температуре 20°

РОМ Полиформальдегид

PP-GR Полипропилен, армированный стекловолокном

РР-Н Гомополимер полипропилена

PPS Полифениленсульфид

PPSU Полифенилсульфон

РТГЕ Политетрафторэтилен

РVС-С Хлорированный поливинилхлорид

PVC-U Непластифицированный поливинилхлорид

PVDF Поливинилиденфторид

Номинальный размер резьбы в дюймах

S Толщина стенки трубы в миллиметрах

S Стандарт толщины = (SDR -1)/2

SA Одинарного действия

SDR Стандартное размерное отношение = d/s

Sp Толщина фланцев крана с фланцами

U Количество отверстий

www.maxiarm.ru

OOO «Максиарм» пр-зд Черницынский, д.3, с.1 - 107241 Москва - Россия Тел. +7 (499) 167 13 11 - Факс +7 (499) 167 13 11

www.maxiarm.ru